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CNN+ [CRF as post processing]

Full CRFs with Quantized Edges

understand properties of full CRFs
efficient graph-cut optimization algorithm

[CNN+CRF] in end-end trainable system
CNN architecture to simulate CRF



Part 1: Full CRF with Quantized Edges




CNN + CRF Post-processing

CNN does not directly model spatial reqularity

Combine with CRF
s Chenet.al. ICLR"2015

input class probabilities Full CRF final output
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Fully connected CRF with Gaussain weighted edges is often used,
optimized with mean-field

regularization properties of full-CRF?
does mean field work well?



CRF Energy with Potts Potentials

high energy low energy

Find labeling X minimizing energy

E(x)=) D, (x,) + > w,[x,#Xx,]
p (p.g)eN
Optimization
Solved exactly in binary case with a graph cut
NP hard in multi-label case
expansion algorithm approximation (factor of 2) [Boykov et.al." TPAMIo1]



Sparse vs. Fully Connected CRF

Sparsely connected CRFs

4, 8, or small neighbourhood connected
TRWS [Kolmogorov "'TPAMI2006] or g )
expansion algorithms work well 60 06060
length regularization

[Boykov&Kolmogorov'ICCV2003]
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Fully connected CRFs [Krahenbul&Koltun’NIPS2011]
all pixels are neighbors, n pixels, O(n?) edges .00
naive application of expansion algorithm, : ¢ fj
TRWS, etc. is not efficient ¢80

(\\ 'YW

reqularization properties? y v



Binary Full CRF with Uniform Weights

Labels in {o,1}
All edges have weight w

Cardinality regularization
n pixels in the image, k pixels assigned to label 1

pairwise energy is
w - (n-k)-k

k same pairwise cost
n

Efficient optimization
foreachk
find the k pixels with lowest cost for label 1
compute total energy
chose k corresponding to the smallest energy



Fully Connected CRFs

Fully connected CRFs
[Krahenbul&Koltun’NIPS2011]

Gaussian edge weights

Wg = exp(—\. B \)exp(—d)
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efficient mean field inference
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approximate bilateral filter [Paris&Durand, 1JCV'2009]
mean field does not work well [Weiss'2001]




Quantized Edge Fully Connected CRFs

Gaussian Edge Weights [Krahenbul&Koltun'NIPS2011]

w = exp(- | - )exp(—d)#
B |

Quantized edge weights q
W =exo(—\ —.\)exp(—m) \
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superpixels



Quantized Edge Fully Connected CRFs

Edge weights depend on superpixel membership

do not have to be Gaussian weighted
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Quantized Edge Fully Connected CRFs

input image superpixels |

o

interior weights exterior weights




Optimization for 2 labels: Internal Cost

Consider one superpixel of size n
internal edges weight

) pixels—‘ E

pixels -

Internal pairwise costis W- k-(n - k)

depends only on



Optimization for 2 labels: External Cost

Consider two superpixels of sizesn, m
external edge weight ww
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External pairwise costis ww - [k-(m-h)+ (n-k)-h]
cost depends on Kk, h

Suppose know that k pixels in a superpixel assigned to label 1
must be pixels that have the smallest cost for label 1



Optimization for 2 labels: Overview

Binary energy on pixels s»multi-label energy on superpixels

[Felzenszwalb&Veksler, CVPR'2010]
new variables are superpixels

new cardinality labels are 0,1, ...,superpixelSize

assume unary cost for label 0is 0

4, pixels 8 pixels

new variables .
j\> new labels  {o,...,4} {o,...,20} {o,...,,8 {o,...,21}

11 pixels

old labels {o,1}



Optimization for 2 labels: Conversion

Sort pixels in each superpixel by increasing cost of label 1
New variables are the superpixels

New labels are 0,1,...,superpixelSize

Meaning of label k for superpixel

k smallest cost pixels of the superpixel are assigned to label 1in
original problem
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Unary Cost for Transformed Problem

Unary cost for green superpixel to have label
= account for unary terms of the original binary problem
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Unary Cost for Transformed Problem

Unary cost for label

= unary terms of the original binary problem

= internal pairwise terms of original binary problem
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Pairwise Cost for Transformed Problem

Pairwise cost for labels k, h

external pairwise terms of original problem

—

n—k pixels- . m—h pixels

WW

R B O O O O

K pixels - - N pixels

P P PP OO O

—

ww - [Ke(m-h)+ (n-k)-h]



Optimization for Transformed Problem

Pairwise cost for labels k, h
W - [K(m-h)+ (n-k)-h]

Rewrite  unary terms + (h - k)2
Optimize exactly with [Ishikawa'TPAMIo4]

number of edges is quadratic in the number of labels
memory inefficient, time complexity almost as bad as the
original binary problem

Or with [Ajanthan’CVPR2016]

memory efficient,
time complexity almost as bad as the original binary problem



Optimization: Jump Moves

Pairwise cost is quadratic (h - k)2
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Jump moves [Veksler'gg, Kolmogorov &Shioura’og]
each move is optimization of binary energy
efficient: number of edges is linear in the number of pixels
give exact minimum efficiently if unary terms are also convex
Our unary terms are not convex

jump moves do not work well in practice



Optmization: Expansion Moves
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= Expansion moves [Boykov et.al., PAMI'2001]
= each expansion move is optimization of binary energy
= efficient: number of edges is linear in the number of pixels
= Not submodular for quadratic potential

= but does find the optimum in the overwhelming majority of cases



Multi-Label Quantized Full-CRF

Apply expansion algorithm
each expansion step is optimization of binary energy
already know how to optimize 2-label Edge Quantized Full CRF

problem
meaning of label 0 is not fixed for expansion algorithm

solution
construct new superpixels according to the current labeling

old superpixels new superpixels



Final Algorithm, Multi-Label Case

foreacha el
perform a-expansion
1. compute new superpixels
2. transform binary expansion energy from pixel
domain to multi-label energy in superpixel domain
3. for each B g | transformed
perform [3 -expansion
until convergence
until convergence



Connection to Gaussian Full-CRF

Quantized edge CRF gets close to Gaussian edge CRF
as number of superpixels increases
as beta increases

Energy Value vs. Number of Superpixels
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Connection to Gaussian Full-CRF

Reqgularization properties of full
Gaussian CRF not well water
understood bin
“all pixels connected”, “preserves
fine structure”
ground truth  Gaussian Full-CRF results

Quantized Edge CRF model helps to understand Gaussian CRF
If k pixels in a superpixel split from the rest, shape of the split does not matter
equal cost labelings




Optimization Results: Full-CRF, 2 labels

validation fold of Pascal 0.4 —

C| t t —~+Mean Field
2012 datdse | o5 [ICM-SuperPixel
reduced to 7ox7yo0 pixels ~ ="[|=Ours
2 most likely labels Do
global optimum with a <
graph cut 01|
our method is exact in
89% of cases 0 -

0 0.5

—

1.5 2

running time in seconds

Mean Field | Superpixel ICM | Ours | Exact

0.012 0.014 0.31 7.1




Optimization Results: Full-CRF, multilabel

25

validation fold of —Mean Field

Pascal 2012 dataset w20 =CM-SuperPiel

21 labels w1

our method is always ¢

better than mean- £ 5|

field, ICM 00 0.5 1

running time in seconds

Mean Field | Superpixel ICM | Our Method

2.16 0.11 15.73




Full CRFs :Semantic Segmentaiton

Test fold of Pascal
2012 dataset

21 labels

Overall IOU
Unary 67.143
Superpixels  65.89
Mean Field 67.3
Ours 67.75

object class | Superpixels Unary Ours
Overall 65.8899 67.143 67.7484
background | 91.996607 92.505 02.6236
aeroplane 81.7341 83.5563 83.7498
bicycle 41.1970 51.1836 | 51.2267
bird 8§1.2498 81.8296 | 83.2405
boat 58.5404 60.2947 | 60.1668
bottle 58.4436 59.62620 | 59.6262
bus 79.8713 80.30270 | 81.0952
car 73.8574 75.22980 | 76.0474
cat 78.1484 78.23960 | 79.4247
chair 26.9773 27.49680 | 27.2861
COW 635.7162 66.69770 | 67.5622
diningtable 359211 56.62960 | 56.6296
dog 68.5041 69.3166 | 69.9515
horse 66.6537 66.9853 | 67.7631
motorbike 80.2764 81.5684 | 82.4261
person 77.1641 77.9252 | 78.5284
pottedplant 49.1919 49.65990 | 50.5761
sheep 69.5786 71.6253 | 71.9729
sofa 42.1142 42,3743 | 43.0364
train 70.8761 73.0517 | 73.4008
tvmonitor 635.6757 635.5707 | 66.3532




Full CRFs :Semantic Segmentaiton

(@) Inputimage (b) superpixels (c) unary terms (d) our result (e) ground truth



Summary of Part 1

Quantized Edge Full CRF model

Approximation to Gaussian Edge CRF

Helps to understand properties of Gaussian Edge

CRF
Efficient optimization of Quantized Edge full
CRF with graph cuts

Transform the original problem to a smaller domain

Optimization quality significantly better than mean
field inference



Part 2: CNN for Simulating CRF



CNN+CRF In End-to-End System

input class probabilities Full CRF final output
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= End-to-end trainable system
= [Zhenget.al., ICCV'2015], etc.

= Implement mean field inference as RNN



CNN+CRF In End-to-End System

End to end trainable NN
input class probabilities Full CRF final output
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= End-to-end trainable system
= [Zhenget.al., ICCV'2015], etc.

= Implement mean field inference as RNN

= Advantages
= end-to-end training

= Disadvantages
= architecture specific to concrete CRF
= and mean field annealing



CRF simulator

End to end trainable NN
input class probabilities Full CRF final output
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= Replace with CRF simulator




CRF simulator

End to end trainable NN
input class probabilities  simulates CRF final output

N L [CNN| e CNN
S d

= Replace with CRF simulator

m Use standard CNN architecture

= train separately on large dataset
= accessto good CRF optimizer to create training dataset
= training dataset of unlimited size

= cansimulate any desired CRF



CRF simulator: Salient Object Segmentation

= CRFis binary
= Efficient and exact optimization with a graph cut



Dataset for CRF Simulator

= Binary CRF energy
E(x)=> D,(x,) + > w,[x, #Xx,]
P

(p.q)eN

horizontal w,,
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= Training Example

= Optimal solution gives ground truth

= Used over 100,000 examples for training
= data terms from saliency and other problems




Architecture for CRF Simulator

W CRF Simulator CNN
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s Standard Encoder/Decoder architecture
= Pre-trained features do not help



CRF Simulator vs Graph Cut

Graph Cut  Simulator Graph Cut  Simulator Graph Cut  Simulator Graph Cut  Simulator Graph Cut  Simulator
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= Captures the 'spirit’ of reqularization

s F-measure is 90.44%



CRF Simulator vs Graph Cut: Energy Values

CRF Simulator
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CRF Simulator vs Graph Cut: Energy Values
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CNN with CRF Simulator: Complete System

probabilities

input image

CRF Simulator
> CNN

input image Weights-CNN  vertical w,,

X IIII




Complete System Results

Saliency |+CRF Complete | Complete | Complete | Complete | Complete
CNN optimizer | TF TT FT FF Random

38.22

/ Iities
input image
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Complete System Results

Saliency
CNN

+CRF
optimizer

Complete
TF

Complete
1T

Complete
FT

Complete
FF

Complete
Random

38.22

38.81
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Complete System Results

Saliency
CNN

+CRF
optimizer

Complete
TF

Complete
TT

Complete
FT

Complete
FF

Complete
Random

38.22

38.81

89.3

probabilities
input image :
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Complete System Results

Saliency |+CRF Complete | Complete | Complete | Complete | Complete
CNN optimizer | TF TT FT FF Random
88.22 | 88.81 | 89.3 | 894
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Complete System Results

Saliency |+CRF Complete | Complete | Complete | Complete | Complete
CNN optimizer | TF TT FT FF Random
88.22 | 88.81 | 89.3 | 89.4 | 89.05
fixed weights probabilities
input image Fr
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Complete System Results

Saliency |+CRF Complete | Complete | Complete | Complete | Complete
CNN optimizer | TF TT FT FF Random
88.22 | 88.81 | 89.3 | 89.4 | 89.05 | 88.93
fixed weights probabilities
input image Fr
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Complete System Results

Saliency |+CRF Complete | Complete | Complete | Complete | Complete
CNN optimizer | TF TT FT FF Random
88.22 | 88.81 | 89.3 | 89.4 | 89.05 | 88.93 | 88.35

probabilities
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M, CNN

%

vertical Wog

WS —> \Veights CNN

horizontal w




Summary of Part 2

Can simulate CRF regularization with CNN
Easy to incorporate into any CNN system

standard architecture
Easy to handle any energy

provided efficient optimizer is available
collect dataset for new energy
dataset size is unlimited
train simulator



